달력

2

« 2025/2 »

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
2015. 10. 17. 03:03

3. Relation 전자공학이론/이산수학2015. 10. 17. 03:03

relation

A (binary) relation R from a set X to a set Y is a subset of XxY.

If (x, y)∈R, we write xRy and say that x is relation to y.

If X=Y, we call R a (binary) relation on X.

domain of R is Dom(R) = { x∈X| (x, y)∈R for some y∈Y}.

range of R is Rng(R) = { y∈Y|(x,y)∈R for some x∈X}


digraph of a relation R on a set X

① draw dots to represent the elements of X.

② If the element (x,y) is in R, draw an arrow from x to y.


Properties of a relation R on a set X

reflexive             xRx for all x∈X.

- symmetric           if xRy, then yRx.

anti-symmetric    if xRy and yRx, then x=y.

transitive            if xRy  and yRz, then xRz.

- If R is reflexive, anti-symmetric, transitive, then R is a partial order. and If (x, y) or (y, x)∈R for      every pair of elements in X, then R is total order.


inverse of R

Let R be a relation from X to Y.

the inverse of R, denoted R^-1, is the relation from Y to X defined by

R^-1 = { (y, x)| (x, y)∈R}


composition

Let R1 be a relation from X to Y and R2 be a relation from Y to Z.

the composition of R1 and R2, denote R2∘R1, is the relation from X to Z defined by

R2∘R1 = { (x, z)| (x, y)∈R1 and (y, z)∈R2 for some y∈Y}.


equivalence relation

R is an equivalence relation if R is reflexive, symmetric and transitive.


equivalence relations and partitions

Let S be a partition of a set X. if for some set T in S, x, y are in T, Define xRy on X. Then R is an equivalence relation on X. 



Let R be an equivalence relation on a set X. For each a∈X, let

[a] = { x∈X | xRa }

then 

S = { [a] | a∈X}

is a partition of X.

the sets [a] are called the equivalence classes of X given by the relation R.



The matrix of relation

Let X,Y be sets and R a relation from X to Y.

Write the matrix A of the relation R as follows:

- Rows of A = elements of X

- Columns of A = elements of Y

- Element a(ij) = if the element of X in low i and the element of Y in column j are related, it is 1 else 0.

Example:

Let X = {1,2,3}, Y={a,b,c,d}

Let R = {(1.a), (1,d), (2,a), (2,b), (2,c)}

The matrix A of the relation R is


The product of matrices

Let R1 be the relation from X to Y and let R2 be the relation from Y to Z.

Let A1 be the matrix of R1 and let A2 be the matrix of R2.

The product of these matrices is A1A2.

if the (i,k)th entry in A1A2 is nonzero, then (Xi, Zk)∈R2∘R1.

since the (1,1)th entry in A1A2 is nonzero, (X1,Z1)∈R2∘R1.


The matrix of a relation on a set X

Let A be the square matrix of a relation R from X to itself.

Let A^2 is the matrix product AA.

- R is reflexive if and only if all terms a(ii) in the main diagonal of A are 1.

- R is symmetric if and only if a(ij) = a(ji) for all i and j.

- R is transitive if A^2=A(whenever c(ij) in C = A^2 in nonzero then entry a(ij) is A is also nonzero.).




'전자공학이론 > 이산수학' 카테고리의 다른 글

6. Proofs  (0) 2015.10.17
5. Proposition  (0) 2015.10.17
4. function  (0) 2015.10.17
2. Sequence  (0) 2015.10.16
1. Set  (0) 2015.09.08
:
Posted by youjin.A
2015. 10. 16. 15:30

2. Sequence 전자공학이론/이산수학2015. 10. 16. 15:30

    는 Definition을 나타내고,      는  Theorem을 나타낸다.


ordered pair

we call (x, y) on ordered pair.

(x1, x2)=(y1, y2) if and only if x1=y1, and x2=y2.


cartesian product

X x Y = { (x, y) | x∈X and y∈Y} 


sequence

A sequence is an ordered list.

S or {Sn} is a sequence named S, the entire sequence.

Sn is single element of the sequence S at index n.


sub-sequence

A sub-sequence {Snk} is a sequence that consist of certain element of {Sn} retained in the original order in S.


string

A string over a set X is a finite sequence of elements from X.


'전자공학이론 > 이산수학' 카테고리의 다른 글

6. Proofs  (0) 2015.10.17
5. Proposition  (0) 2015.10.17
4. function  (0) 2015.10.17
3. Relation  (0) 2015.10.17
1. Set  (0) 2015.09.08
:
Posted by youjin.A
2015. 10. 13. 00:15

TCP/IP 기반의 인터넷 카테고리 없음2015. 10. 13. 00:15

통신의 역사

봉화    >    편지    >    전신    >    전화    >    Interent


Internet

인터넷을 ‘TCP/IP라는 표준화한 통신 규약을 기반으로 전 세계를 연결하는 네트워크들의 네트워크’라고 정의한다.


TCP/IP

 1980년 초 미국 국방부에서 구축한 전산망인 알파넷(ARPAT)에서 개발된 프로토콜으로서, 1983년 1월 알파넷에서 NCP 대신에 이 표준을 사용하였다. 그 후에 알파넷에서 Milnet를 독립시키고, 이 두 네트워크 사이의 통신으로 인터넷을 이용할 무렵 미국 방위통신청(DCA;Defense Communication Agency)이 모든 알파넷을 이용하는 호스트 컴퓨터를 TCP-IP로 사용하도록 하였다. 

통신을 위한 기술을 계층 별로 나누어 네트워크 접근방법, 프레임 포맷, 매체에 대해 독립적으로 동작하도록 설계되어 졌다. 그래서 서로 다른 네트워크 형태를 연결 할 수 있다.


OSI

OSI(Open System Interconnection)는 1984년, ISO(International Organization for Standardization 국제 표준화 기구)에서 각종 시스템 간의 발표한 표준 네트워크 모델이다. OSI는 시스템에 상관없이 서로의 시스템이 연결 될 수 있도록 만들어 주는 모델이다.

:
Posted by youjin.A