달력

1

« 2025/1 »

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
2015. 9. 8. 23:29

1. Set 전자공학이론/이산수학2015. 9. 8. 23:29

    는 Definition


set

an unordered collection of object.

A = {1, 3, 5, 7}

B = { n | n is a prime number} which we read as 'the set of all n such that n is a prime number'.

Two sets X and Y equal if ((x∈X -> x∈Y) ^ (x∈Y -> x∈X)).

cadinality, denoted by |X|, is the number of elements in a set X.(size)


subset

We write X⊆Y to mean that any member of X is also in Y, and say that X is a subset.

X is proper subset if X ⊆ Y and X≠Y. 


Power set

The set of all subsets of X is called its power set P(X). Thus

P(X) =  { Y | Y⊆X}


partition

A partition S on a set X is a familly {A1, A2, ... , An} of subsets of X, such that

S = {A| (A⊆X) ^ (Aj∩Ak = ø. for every j, k) ^ ( A1∪A2∪ ... ∪ An = X)


operation

①union

X∪Y = { x| x∈X or x∈Y}

② intersection

X∩Y = { x| x∈X and x∈Y}

Two sets X and Y are disjoint if X∩Y = ø.

A collection of sets S is said to be pairwise disjoint if whenever X and Y are distinct sets in S, X and Y are disjoint. 

③ difference

X - Y = { x| x∈X and x∉Y}

④ complement

X^ ̄ = U - X

⑤ Other Notation

Let S = {A1, A2, A3, ... , An}

∪S = { x|x∈X for some X∈S} = A1∪A2∪ ... ∪An

∩S = { x|x∈X for all X∈S} = A1∩A2∩ ... ∩An 

pairwise disjoint의 예) S = { { 1, 4, 5}, {2, 6}, {3}, {7, 8} }


Properties of set operations



문제

'전자공학이론 > 이산수학' 카테고리의 다른 글

6. Proofs  (0) 2015.10.17
5. Proposition  (0) 2015.10.17
4. function  (0) 2015.10.17
3. Relation  (0) 2015.10.17
2. Sequence  (0) 2015.10.16
:
Posted by youjin.A