달력

1

« 2025/1 »

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
2015. 10. 17. 05:54

4. function 전자공학이론/이산수학2015. 10. 17. 05:54

function

A function f from a set X to a set Y(f : X->Y) is a subset of XxY such that for all x∈X, there is exactly one y∈Y with (x, y)∈f.


floor and ceiling

The floor of x, denoted └x┘, is the greatest integer less than or equal to x.

The ceiling of x, denoted ┌x┐, is the least integer greater than or equal to x.


Properties of a function f 

one-to-one                          for all x1, x2∈X, if(x1) = f(x2), then x1 = x2.

onto                                   for all y∈Y, there exists x∈X such that y=f(x).

- bijection                              one-to-one, onto

- Binary operator on a set X       a function from X x X to X

- unary operator on X               a function from X to X


inverse of f

Let f be a bijection function from X to Y.

the inverse of f, denoted f^-1, is the funtion from Y to X defined by

f^-1 = { (y, x)| (x, y) ∈ f}


composition

Let g be a function from X to Y and f be a funtion from Y to Z.

the composition of f with g, denoted f ∘ g, is the funtion from X to Z defined by

f ∘g(x) = f( g(x) )




'전자공학이론 > 이산수학' 카테고리의 다른 글

6. Proofs  (0) 2015.10.17
5. Proposition  (0) 2015.10.17
3. Relation  (0) 2015.10.17
2. Sequence  (0) 2015.10.16
1. Set  (0) 2015.09.08
:
Posted by youjin.A